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Abstract

The inverse problem of recovering an electrical conductivity of the

form _f(x) = IlL (k--1)XD (XD is the characteristic function of D) on a

region _t C _2 from boundary data is considered, where D CC _ and

k is some positive constant. A linearization of the forward problem is

formed and used in a least squares output method for approximately

solving the inverse problem. Convergence results are proved and some

numerical results presented.
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1 Introduction

Impedance tomography seeks to recover information about the internal elec-

trical conductivity of an object by means of voltage and current flux measure-

ments made on its boundary, and so provide a non-invasive, non-destructive

imaging technique. The goal of this paper is to provide a method for the

approximate recovery of certain types of perturbations of a constant back-

ground conductivity. By using methods adapted to the class of conductivities

at hand, one hopes to achieve more modest computational loads than more

general methods (e.g., [2]) and better continuous dependence of the resulting

estimates on the boundary measurements.

The problem may be formulated mathematically as follows. Let _ be a

bounded simply connected open subset of IRe<, N > 2, with C 2 boundary

and D an open subset of _ with D CC _. Define the function "7(x) as

I t
"7(x) =

Lk xED.

Let u(x) be the solution to the elliptic boundary value problem

L.yu = V."tVu = 0 in_2

o,.,.,lo.= g (1.1)

/o = 0,udS
n

where dS denotes surface measure on O_, v is the outward unit normal vector

to OR, 8_,u = v. Vu, and g is a function on 8_ with Ion g dS = O. Physically,

7 represents the conductivity of the body _, g is an applied current fiux
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density on On, and u denotes the electrical potential induced on ft. It is well

known that (1.1) has a unique solution. In this setting the goal of impedance

tomography is to recover information about the region D given the value of

the potential u on the boundary of _2 induced by the known current flux g. Of

course one might apply severat different current fluxes, measure the potential

that each induces on 0fl, and use all of this information to try to recover D.

For notational simplicity we will consider only the case of a single boundary

measurement, i.e., one applied current flux and measurement of the induced

potential on 0ft. It is straightforward to extend the results to multiple applied

fluxes. The constant k will be considered known a priori. Friedman [5] has

proven results regarding the detection and identification of the region D from

a single boundary measurement and some results concerning the continuous

dependence of D on the boundary data also exist (see [3]). It is known that

D is uniquely determined if one takes all possible boundary measurements,

that is, if one applies all possible currents fluxes and measures the induced

voltages for each (see [71 or [8]).

It will be necessary to restrict the domains D to lie in a certain admissible

class. It will be assumed that this class is described by a finite number of

parameters, so that D = D(q) with q E Q, where Q is a compact subset of

IR". Certain restrictions on the map q --* D(q) will be made later.

We use Wk(fl) to denote the Sobolev space obtained by completing

C_(_) with respect to the norm

I1¢11 ,,c.)=

The solution to (1.1) lies in W'(fl) (see [61) for sufficiently regular g.
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In practice one does not measure the potential at every point on 0fl,

but only at finitely many locations. We will thus specify an observation

mechanism for the potential on 0f_. Let N_, i = 1,..., M, be open subsets

of 0f_. For each N_ let f_(m) be a bounded measurable function supported in

N_. We will then assume that the measurement of the potential on ogf_ is of

the form y = 2-(u) where the map 2-: L2(0_) -+ 1RM is defined by

=

i = 1,..., M. Note that the restriction of a function in Wl(fl) to ¢9fl makes

sense as an element of L2(¢3_) so that the integral is defined and finite if

E WI(_). Since the trace operator is continuous from Wl(fl) to L2(Ofl),

the operator 2" is continuous from Wl(¢l) to IR'.

One method for approaching the inverse problem is to use an output

least squares method. Specifically, let di denote the potential observed by

the electrode at Ni for some unknown region D(qo) when the current flux g

is applied and let y¢ = 2-(uq) where uq solves (1.1) with D = D(q). Define a

fit-to-data function J(q) by

1 M 12.
J(q) = "_ Y_ lY_ - d_

i=l

One may then attempt to solve the inverse problem by seeking a solution

to the optimization problem of finding q* E Q which minimizes J(q). One

of the drawbacks of this approach is that every evaluation of J(q) requires

one to solve the forward problem (1.1), which may be costly computationally.

Also, one has no (obvious) direct way to compute the derivatives of J(q) with

respect to q; availability of these derivatives is helpful in any optimization
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problem. We will instead consider a modification of the inverse problem,

replacing the solution _ of (1.1) by _, its tangent llne approximation in the k

variable about the point k = 1. The function _ may be computed explicitly,

much more quickly than u, and using _ in place of u in the definition of

J allows us to compute directly the derivatives of J with respect to the

parameter q, provided the map q --+ D(q) is suitably restricted.

The organization of the paper is as follows. The second section deals with

preliminary results concerning theNeumann function for the Laplacian on a

bounded region. The third section establishes the differentiability of the map

k _ u(m) for z E 0f_ for u solving (1.1) and the accuracy of the linearization

about k = 1. The original inverse problem is replaced by an inverse problem

involving the linearized solution _. In the fourth section a computational

method for solving the linearized version of the inverse problem is presented

and convergence results are proved. The final section contains numerical

results; the algorithm for solving the linearized inverse problem is applied to

boundary data generated by solving the linearized forward problem (for fi)

and the original equations (1.1).

z

2 The Neumann Function

The Neumann function for the Laplacian on f_ is a function N(m, _) defined

on flx f_ which satisfies, for each x E fl, the conditions

= -6,
-1

O,,,N(x,_)leean -
IO 1
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with the normaiization J'onN(z,_)dS t = 0. Here 6= denotes the delta func-

tion at z and A t is the Laplacian applied in the _ variable. For f/CC IR2

one can verify that the Neumann function is given by

2v(=,_) = r(I, - _1)+ _(=,_)

where P(r) = -_ log(r) and _r is chosen to solve

At_(=,_) = o

o_(=, _)lt_ao =

fon.(=,_)dst = o.

Also, if u0 G O_(_) satisfies

0v,r(=, OIt_o.

A_t 0 -- f

ov_01oa= g

fo uoeIS = 0
n

then u0 can be represented as

_o(=)= fo _v(=,_,)g(Oest-/o _v(=,,,)/(Oe_, (2.11

for each z E Ft.

The remainder of the paper will be limited to the case in which f/C IR2

and we shall next make a restriction which, for simply connected f_, represents

no loss of generality. Specifically, we assume that f/is the unit disk, for one

can always map the region f/ to the unit disk conformally via a mapping

¢. It is straightforward to verify that the function u o ¢-1 defined on the

5
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disk satisfies an equation of the form (1.1) with the same constant k and D

replaced by ¢(D). The conformal map ¢ also maps the unit normal vector

field on 0_2 to a normal (though not unit) vector field on the boundary of the

disk, so that the transformed problem has Neumann data at the boundary.

In the case in which _ is the unit disk one can verify that the Neumann

function is given by

1

N(z,_) = - 2---_(log(lx - _[) + log(l_ - _]))

where _, = xllxl2.

3 A Linearization

For a particular region D in F_ and fixed Neumann data 9, let u(k, x) denote

the parameter-dependent solution to (1.1). Let uo(z) denote the harmonic

function on _2 defined by (2.1) and define

¢(_) = _ foo =0(_)&,N(_,_)dS¢

for z E 0_.

Lemma 3.1 For fixed x E O_ the map k _ u(k, x) is differentiable with

respect to k at k = 1, and its derivative is given by ¢(x).

Actually, we will show something a bit stronger, namely that

limI_(k,_,)- _'o(_')- (k - 1)¢(x)1< C(k - 1)_
k.--*l



for some constant C, so that the error in the tangent lineapproximation is

o((k-

Before proving Lemma 3.1 we will need a couple of facts about the func-

tion u solving (1.1). It is shown in [9], section 16 ("Diffraction Problems")

that u e W2(fl \ D) and u C W2(D). It is also shown that the function

u is continuous across OD and satisfies the jump condition _u = kO_u on

OD, where o_ju denotes the outward unit normal derivative of u on OD as

measured from inside D, and _u is the outward unit normal derivative as

measured from _ \ D. Using these facts one can prove the following propo-

sition.

Proposition 3.1 For z E _ \ D the solution u to equation (1.1) satisfies

u(k,z) = u0(x) + (1 - k) foDU(k,_)ov, g(x,_)dS_. (3.1)

For z E OD, u satisfies the integral equation

1 + k D u(k'_)ov'g(z'_)dS_ + Uo(Z). (3.2)

Proof: Since k is fixed throughout the proof, we'll simply write u(x) for

the function u. To prove equation (3.1), take x e fi \ D and B,(z) a ban

of radius e around z. Applying the divergence theorem on a \ (D U B_(z))

(valid since u is W 2 on this region) and using the fact that u(_) and Y(x,_)

are harmonic as functions of _ on this region shows that

= _fsn(u(_)O_'N(z'_)- g(x,_)O_u(_))dS_
0

- fos,(.)(u(_)O_cg(x,_)- g(x,_)O_u(_))dS_

,,_[_D(U(_)g_v'g(z'_) - g(z,, _)_u(_)) dS_,

7



=

where the vector field v of the boundary of B,(a;) points away from the ball.

Using the properties of the Neumann function and the representation formula

(2.1) yields

0= -,_o(_)
t

- JgB.(.)(_ff)O.,N(:,_)-N(:,_)O._,(_))d&

- _D(u(_)_,N(x,_)- N(:,_)_u(_))dS(.

As e goes to zero standard potential theory arguments (e.g., [4], chapter 3)

give

0 = -'_o(_)+ ,_(_)- f_D(,_(_)¢,N(_, _) --N(=, _)¢u(_)) dS( . (3.3)

Note if x E O_ then B,(z) is only "half" of a disk, although in this case

N(x,() = 2I'(x,(), so that (3.3) remains valid. Finally, since N is smooth

near OD as a function of (, O_,,N = _(N so that

=

= k_ O_,N(_,_)_(_)d&

where the last equality follows by applying the divergence theorem on D.

When substituted into equation (3.3), the last equality yields (3.1).

To prove equation (3.2), rewrite the integral in equation (3.1) as

=
1

= -_Jo_O_u({)N(x., f, ) dS(.

When this is combined with equation (3.1), we obtain, for z E i_ \ D,

1- k r
,,(=) = _0(=)+ T Jo_,_u(_)g(z,_)d&. (3.4)

8



This expression remains valid for z E OD as well, since the singularity in the

integrand is only logarithmic and u is continuous across OD. For x E OD let

D, = D \ B.(z). An application of the divergence theorem shows that

As e tends to zero this becomes

1

faD u(_)O'eg(m'_)dSe + 7 u(z) = faDO_U(_)g(m'_)dSe

1 t"

= k Jolv c_u(_)N(m'_)dSe

or

[
_u(z)k foDu(_)cg,,¢N(x,_)dS_.,lad cT_u(_)N(z'l_)dSe = + k

This equation, upon substitution into (3.4), yields equation (3.2). []

Proof of lemma 3.1: From equation (3.2) it follows that

sup lu(k,z)l < 211-k[( 2=_aD -- _7 _P I_(k,()l)(=_oosuPII0_,NtlLI<oo))+ _ suPSDI_'01

or, with a little rearrangement,

2 supoD I_ol
sup I_,(_,=)1<
=cOD -- i +k-2(1-k)sup=llO,_,g(z,_)llL_(oD)

Since suP=co D Ilcg,,eg(z, _)Ht.t(0D)is finite (O,_,N(z, _)is actually continuous as

a function of z and _-see [4], section 3C), suPoD lul is bounded as a function

of k for k in some neighborhood of one. In fact, rewriting equation (3.2) as

,,(k,z) - _'o(=)- 2(I - k) 1 - k
1 + k fad u(_)O'eN(z'_)dSe + T-_ u°(z)

and using the boundedness of u as a function of k shows that

sup lu(k,z) - uo(z)l < Clk - 1[.
=ESD



The constant C will depend on D and u0. From equation (3.1) and the

definition of ¢(z),

uCk, x) - Uo(X) - (k - l)_bCx)= (i --k) fsDCU _o)(_)Ou_N(_, _) d_ (3.5)

for x e 0fL Since supo D ]u - Uol _< C]k - 1[ on OD, equation (3.5) shows

sup ]u(k,z) - _(z)l G Olk- 1]2
zEOfl

for x E 0fl and some _, independent of z. This proves Lemma 3.1. []

Define the linearized solution _2(x) as

a(.) = + (k -

Next we make some restrictions on the map q --, D(q). First, we require

that D(q) C fl' for some fixed n' CC fl and that the boundary of D(q) is a

simple closed curve. Parameterize OD(q) as z = zq(t),y = yq(t), 0 < t < 2_r

with

ds=
k, dt ] + \ dt /_" -- 2_r

where L is the length of the boundary of D. We also require that for all

qeQ,

for some constant K. This follows, for example, if the curvature of OD(q)

is bounded. Finally, we require that if q --* q0 in IR" then D(q) --* D(qo),

z

10



where convergence of these domains means that for each e > 0 there is a

number 5 > 0 so that

whenever Iq- q0l < 6 (6 is independent of q0).

We now reformulate the original inverse problem, using the the linearized

solution _ in place of u:

(IDP) minimize J(q) for q E Q

where J(q) is defined as

1 M

J(q) = _ _ lY_ - d,I 2,
i=1

but with yq = _'(fi¢), where _q is the linearization of the solution to (1.1)

with D = D(q) and _" and the d_ are as defined in the introduction.

One can prove that the problem (IDP) has a solution. The conditions on

the map q _ D(q) guarantee the continuity of the map

q _ u0(z) + (k- i) foDUo(_)oveg(x,_) dSe

as a map from _'_ to L2(On) (Ov,N(z,_) is smooth for m e On and _ e OD),

provided the Neumann data g is regular enough, for example, g E L2(Ofl).

The map _" is continuous from L_(cgn) to IR M so that q _ J(q) is continuous

and hence J(q) attains a minimum for some q" E Q. Moreover, the map

11



q _ fi is differentiable if the map q _ (%(t), ya(t)) is differentiable, so that

we may use an optimization scheme involving evaluation of derivatives in

solving (IDP).

Remark: If the Neumann data g is not sufficiently regular then the func-

tion u0 may not be in L2(0_); however, suppose that Uo e L2(S) where

S C 0R. Then the above argument remains valid if we require that the elec-

trode locations Ni be subsets of S. Also, if g is smooth enough on S C 0_

then u0 will be continuous on 5'. In this case we may take the functions f_ to

be 6p_, delta functions at points pi E Ni, so that _- is simply a point-by-point

sample. The proofs above and in section 4 remain essentially unchanged.

4 A computational method

In this section we will consider a computational method for solving the iden-

tification problem (IDP). An n point quadrature rule _/,, on the interval [0, L]

is a set of pairs of real numbers {gi,wi}, ti e [0, L], for i = 1,...,n. We

will say that the family of quadrature rules {r/,,) = {t_n, w_,,}, i = 1,..., n, is

convergent if for any ¢ C C1[0, L],

/: I_o_,¢(t_n) - ¢(t)dt _ 0 (4.1)

as n ---, e_. The convergence of the family {r/n} will be caged uniform if the

convergence in (4.1) is uniform over the set {¢ e CI[0, L]; II¢llv'[0.r_] < A}

for any constant A, i.e., the rate of convergence depends only on C 1 bounds

for ¢.

12



Given a quadrature rule r/,, = {ti.,, win} define jn(q) as

1 M

i=1

with ?_q= _'(_), _" and di as previously defined and _. defined by

_(z) = u0(z) + (k - 1) wl.uo(((ti.))O_N(z,((ti_))

where _(t) is a parameterization of OD(q) satisfying (3.6). Define the discrete

approximation to the identification problem (IDP):

(AIDP)" minimize J"(q) for q eQ.

Theorem 4.1 Let {r/,_} be a uniformly convergent family of quadrature rules

and let q'_ be the solution to the associated problem (AIDP) _. Then the se-

quence qn contains a subsequence qn.. converging to some q* E Q. Moreoverj

q* is a solution to (IDP).

Proof: If D = D(q) for some q E Q a_d cOD is parameterized in (_1, _a) co-

ordinates as _(t) = (_l(t),_2(t)), subject to the condition (3.6) then, written

out in terms of the parameterization,

¢(x) = foa'rUo(_(t))vtg(x,_(t)). _t dt (4.2 /

for z E cO_. Since N and its derivatives are continuous as functions of z and

for z E cO_ and _ E g_', we can bound them uniformly for z and _ in these

sets. Similarly uo and its derivatives are bounded on _'. Using these facts,

13



aswell as D(q) C n' for all q E Q, one can bound the integrand and its first

derivative (as functions of t), uniformly for q E Q and x E ant. It follows

that

_"_wi,uo(((ti,))V(N(x,((ti,)). (ti,,) --* ¢(x)
{=1

as n ---, 0% uniformly for q • Q, x • 0n, so that fi_,(x) _ _q(x). The operator

.T is continuous from L2(0n) to ]RM so that J"(q) _ J(q) uniformly with

respect to q. Hence if q" is a sequence in Q with q'_ --_ q then

lim J"(q'_)= J(q). (4.3)

Let q" be a solution to (AIDP)". Since Q is compact some subsequence

q"" converges to q* • Q. For any q • Q we have

J"(q") <_J_(q).

Taking the limit over n and using (4.3) shows that

J(q*) < J(q)

so q° solves (IDP). []

5 Numerical Results

We will begin with a simple case. As mentioned, n will be taken to be the

unit disk in ]R 2. The family of subdomains D(q) will consist of disks centered

at (a, b) with radius r, so that q = (a, b, r). The set Q will consists of those

points satisfying _ ÷ b2 + r < p < 1, so that each domain is contained

14



in fl and is boundedaway from Off. It is straightforward to verify that this

family satisfies the conditions stated in section 3. Moreover, we can directly

compute the derivatives of fi with respect to a, b, and r.

For the applied current flux we take g = -_r0_8_ where o0_ is the counter-

clockwise tangential derivative and 5_ is the dirac delta function at _ E aft.

The harmonic function Uo with this Neumann data is known in closed form

and for w = (1,0)is given in (z,V) coordinates by

_(m,y) = (1 - z) 2 +V_"

Note that this function is not L 2 on 0f_, but is smooth and bounded away

from the point (1,0) (see remarks at the end of section3). The electrode

locationswill hetakenasp, = (cos( .=q16),sin(2,q16))fori = i,...,15

and for the functions f_ we simply set/_ = 6p,, so br(u) is just a point-by-point

sample of u at the points p_.

A 10-point Oauss-Legendre integration rule was used to approximate _b(x)

and so obtain the discrete approximation J(q) to J(q). The derivatives of

J(q) were computed by simply differentiating the sum UT(q) with respect to

q. The function J(q) was minimized using a Levenberg-Marquardt optimiza-

tion procedure with initial guess q = (0, 0, 0.1). The simulated data for the

linearized inverse problem was generated by evaluating fi(z) at the points

z = pi. To simulate noise in the data, independent gaussian random vari-

ables were added at noise levels of 0%, 5%, 10% and 20%, e.g., for 10% noise

the random variables added had a mean square value of 0.1x ]lu 2-u0nn_(an) in

the data. The results are summarized in table 1. The value of/c was chosen

as 1.1, although for the linearized problem the value of k is irrelevant.

15



Figure 1 shows the accuracy of the the linearized solution as an approx-

imation to the true solution for k = 1.1 and k = 2.0, the region D being

that used for figures 3 through 7. The graphs are of u - u0 and fi - u0.

The forward problem was solved by using Nystr6m's method (see [1]) on the

Fredholm equation (3.2) to solve for u on OD and then representing u on

the boundary of fl by means of equation (3.1). Tables 2 and 3 summarize

the results when the optimization is applied using data from the full non-

linear forward problem. Here the value of k is relevant; the algorithm should

perform best for k near 1. The tables present results for k = 1.1, and k = 0.5.

To apply this method to more general regions we need a way to describe

D using finitely many parameters. We'll assume OD(q) can be described as

re(t) = a + r(t)cos(t)

y(t) = b + r(t)sin(t)

for 0 < t < 2_', where a and b are constants and r(t) is a C 2 cubic spline

satisfying r(t_) = q_, i = 1,... ,m with t_ = 2_ri/m with the endpoint condi-

tions r(0) = r(27r) and r'(0) = r'(2_). It can be verified that the conditions

(3.6) are satisfied provided the qi are bounded away from zero. This algo-

rithm was implemented as follows. First, apply the algorithm which assumes

D is a disk to recover that disk centered at Ca, b) with radius r which best

fits the boundary data. Second, with this choice for a and b and the initial

guess qi = r apply the optimization procedure (Levenberg-Marquardt) in the

variables ql,..., q,_. A smooth penalty term, identically zero for qi > 0.01,

was added to 3(q) to ensure that the qi were bounded away from zero. This

16



term was of the form _=5 2Ei=x(/(z)) with / taken to be

(

f(x) = _ c3(x -- ca) aexp - • < c,

t 0 z >cl

for constants cl = 0.01, c2 = 3.05e - 5, cs = 1.36e4.

In Figures 3 through 8, m = 5, a = 0.2, b = 0.4, ql = q_ = 0.032,

q3 = 0.056, and q4 = qs = 0.04, respectively. The linearized forward problem

was solved (with a dipole at (1,0)) and the optimization procedure applied

to the resulting data. Figure 3 shows the region D(q) and the best fit disk.

Figure 4 shows the region recovered by optimizing over q with (a, b) fixed as

the center of the best fit disk. Figure 5 shows the region D(q) and recovered

estimate when 10% noise is added to the data.

The optimization procedure for the linearized problem was also applied

to data generated by solving the full non-linear forward problem. The region

D(q) is chosen as in the previous example. Figure 6 shows the recovered

estimate of D(q) when k = 1.1, using a single dipole at (1, 0). Figure 7

shows the same with k = 0.5 and figure 8 with k = 3.0. For k near one the

estimate of D is good. For values of k farther from one the estimates of D

are correct in location and approximate size, but the details of the shape are

lost.

Finally, one is not restricted to using a single applied current flux. An

obvious extension of the previous results allows one to apply the linearized

approximation for multiple current fluxes. The functional J(q) is then simply

defined as the sum of the Ji(q) where Ji(q) is the cost functional for the

ith current flux. For Figure 9 the region D(q) was chosen to be a disk

17



centeredat (0.3,-0.3) with radius 0.05 and k = 1.5. In the first figure a

single dipole current was applied and 50% noise added to the data from the

forward problem. In the second figure 8 dipole currents were applied, the

dipoles located at (cos(Tri/4),sin(Tri/4)), i = 0,..., 7, again with 50% noise

added.

18
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q

a

b

r

iterations

J(q)

true

0.2

0.3

0.05

Noise bee 5%noise 10%noise 20%noise

0.2000 0.2010 0.2026 0.2639

0.3000 0.2952 0.2891 0.2945

0.0500 0.0507 0.0491 0.0452

5 5 6 6

5.67x 10-19 1.27×10 -9 5.46x 10-9 6.94 xlO -s

Table 1: Summary of results for linearized inverse problem

q

a

b

r

iterations

J(q)

true

0.2

0.3

0.05

Noise Lee 5% noise 10% noise 20% noise

0.1999 0.2028 0.2258 0.1582

0.3000 0.2987 0.2899 0.3144

0.0512 0.0506 0.0503 0.0550

5 5 6 6

7.28x10 -19 2.50x10 -9 7.96x10 -9 2.46x10 -s

Table 2: Summary of results for full non-linear problem, k = 1.1.
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q true

a 0.2

b 0.3

r 0.05

iterations

J(q)

Noise free

0.1991

5% noise

0.2090

10% noise

0.1722

20% noise

0.2170

0.29270.3003 0.3015 0.3293

0.0578 0.0575 0.0604 0.0551

5 5 5 5

3.54× 10 -17 1.41×10 -7 3.40x10 -7 8.74x10 -7

Table 3: Summary of results for full non-linear problem, k = 0.5.

1.0

0.5

0.0

-0.5

-1.0 -j t i _ i

-I .0 0.0 1.0

0.48

0.44

0.40

0.,36

0.52

I I I I I I I I I ,,

O. 12 O. 18 0.24 0.,30

Figure 3: Two views of actual region D (solid line) and best fit disk (dashed

line).
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0.4-8

0.44

0.40

0.36

0.32 m

I

0.12

I . I I 1 I I I I

0.18 0.24 0.30

Figure 4: Actual region D (solid line) and recovered estimate (dashed line).

0.48

0.44

0.40

0.36

0.32
__.1 I I I I I i 1

0.12 0.18 0.24 0.30

=

Figure 5: Actual region D (solid line) and recovered estimate (dashed line )

with 10% noise added to input data.
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0.48

0.44

0.40

0.,_36

0.52
I

0.12

I I I I t I I I

O. 18 0,24 0.,30

Figure 6: Act.al region D (solid line) and recovered estimate (dashed line),

k= I.i.

0.48

0.44

0.40

0.36

0.,32
I

0.12

,,s Xx
/ x

x //' ,

I I I t I I t I

0.18 0.24 0.50

n:

Figure 7: Actual region D (solid llne) and recovered estimate (dashed line),

k= 0.5.
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--0.15

-0.20

-0.25

-0.50

-0.55

--O.4O

O.45

0.4-8

0.44

0.40

0.36

0.32
t I I I I I I I I

0.12 0. t8 0.24 0.50

Figure 8: Actual region D (solid line) and recovered estimate (dashed line),

k= 3.0.

1 Dipole 8 Dipoles

I I
_x t s!

-0.15

0.20

-0.25

-0.50

-0.55

-O.40

-0.45I I 1 J t I I I I I 1

0.50 0.40 0.50 0.50 0.40 0.50

Figure 9: Actual region D (solid line) and recovered estimate (dashed line),

k = 1.5, using 1 and 8 applied dipole currents, respectively.
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